小升初數(shù)學(xué)經(jīng)典必考題型50道
1.已知一張桌子的價(jià)錢是一把椅子的10倍,又知一張桌子比一把椅子多288元,一張桌子和一把椅子各多少元?
解題思路:
由已知條件可知,一張桌子比一把椅子多的288元,正好是一把椅子價(jià)錢的(10-1)倍,由此可求得一把椅子的價(jià)錢。再根據(jù)椅子的價(jià)錢,就可求得一張桌子的價(jià)錢。
答題:
解:一把椅子的價(jià)錢:
288&pide;(10-1)=32(元)
一張桌子的價(jià)錢:
32×10=320(元)
答:一張桌子320元,一把椅子32元。
2. 3箱蘋果重45千克。一箱梨比一箱蘋果多5千克,3箱梨重多少千克?
解題思路:
可先求出3箱梨比3箱蘋果多的重量,再加上3箱蘋果的重量,就是3箱梨的重量。
答題:
解:45+5×3=45+15=60(千克)
答:3箱梨重60千克。
3. 甲乙二人從兩地同時(shí)相對(duì)而行,經(jīng)過(guò)4小時(shí),在距離中點(diǎn)4千米處相遇。甲比乙速度快,甲每小時(shí)比乙快多少千米?
解題思路:
根據(jù)在距離中點(diǎn)4千米處相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知經(jīng)過(guò)4小時(shí)相遇。即可求甲比乙每小時(shí)快多少千米。
答題:
解:4×2&pide;4=8&pide;4=2(千米)
答:甲每小時(shí)比乙快2千米。
4. 李軍和張強(qiáng)付同樣多的錢買了同一種鉛筆,李軍要了13支,張強(qiáng)要了7支,李軍又給張強(qiáng)0.6元錢。每支鉛筆多少錢?
解題思路:
根據(jù)兩人付同樣多的錢買同一種鉛筆和李軍要了13支,張強(qiáng)要了7支,可知每人應(yīng)該得(13+7)&pide;2支,而李軍要了13支比應(yīng)得的多了3支,因此又給張強(qiáng)0.6元錢,即可求每支鉛筆的價(jià)錢。
答題:
解:0.6&pide;[13-(13+7)&pide;2]=0.6&pide;[13—20&pide;2]=0.6&pide;3=0.2(元)
答:每支鉛筆0.2元。
5. 甲乙兩輛客車上午8時(shí)同時(shí)從兩個(gè)車站出發(fā),相向而行,經(jīng)過(guò)一段時(shí)間,兩車同時(shí)到達(dá)一條河 的兩岸。由于河上的橋正在維修,車輛禁止通行,兩車需交換乘客,然后按原路返回各自出發(fā)的車站,到站時(shí)已是下午2點(diǎn)。甲車每小時(shí)行40千米,乙車每小時(shí)行 45千米,兩地相距多少千米?(交換乘客的時(shí)間略去不計(jì))
解題思路:
根據(jù)已知兩車上午8時(shí)從兩站出發(fā),下午2點(diǎn)返回原車站,可求出兩車所行駛的時(shí)間。根據(jù)兩車的速度和行駛的時(shí)間可求兩車行駛的總路程。
答題:
解:下午2點(diǎn)是14時(shí)。
往返用的時(shí)間:14-8=6(時(shí))
兩地間路程:(40+45)×6&pide;2=85×6&pide;2=255(千米)
答:兩地相距255千米。
6. 學(xué)校組織兩個(gè)課外興趣小組去郊外活動(dòng)。第一小組每小時(shí)走4.5千米,第二小組每小時(shí)行3.5千米。兩組同時(shí)出發(fā)1小時(shí)后,第一小組停下來(lái)參觀一個(gè)果園,用了1小時(shí),再去追第二小組。多長(zhǎng)時(shí)間能追上第二小組?
解題思路:
第一小組停下來(lái)參觀果園時(shí)間,第二小組多行了[3.5-(4.5-3.5)] 千米,也就是第一組要追趕的路程。又知第一組每小時(shí)比第二組快( 4.5-3.5)千米,由此便可求出追趕的時(shí)間。
答題:
解:第一組追趕第二組的路程:
3.5-(4.5- 3.5)=3.5-1=2.5(千米)
第一組追趕第二組所用時(shí)間:
2.5&pide;(4.5-3.5)=2.5&pide;1=2.5(小時(shí))
答:第一組2.5小時(shí)能追上第二小組。
7. 有甲乙兩個(gè)倉(cāng)庫(kù),每個(gè)倉(cāng)庫(kù)平均儲(chǔ)存糧食32.5噸。甲倉(cāng)的存糧噸數(shù)比乙倉(cāng)的4倍少5噸,甲、乙兩倉(cāng)各儲(chǔ)存糧食多少噸?
解題思路:
根據(jù)甲倉(cāng)的存糧噸數(shù)比乙倉(cāng)的4倍少5噸,可知甲倉(cāng)的存糧如果增加5噸,它的存糧噸數(shù)就是乙倉(cāng)的4倍,那樣總存糧數(shù)也要增加5噸。若把乙倉(cāng)存糧噸數(shù)看作1倍,總存糧噸數(shù)就是(4+1)倍,由此便可求出甲、乙兩倉(cāng)存糧噸數(shù)。
答題:
解:乙倉(cāng)存糧:
(32.5×2+5)&pide;(4+1)=(65+5)&pide;5=70&pide;5=14(噸)
甲倉(cāng)存糧:
14×4-5=56-5=51(噸)
答:甲倉(cāng)存糧51噸,乙倉(cāng)存糧14噸。
8. 甲、乙兩隊(duì)共同修一條長(zhǎng)400米的公路,甲隊(duì)從東往西修4天,乙隊(duì)從西往東修5天,正好修完,甲隊(duì)比乙隊(duì)每天多修10米。甲、乙兩隊(duì)每天共修多少米?
解題思路:
根據(jù)甲隊(duì)每天比乙隊(duì)多修10米,可以這樣考慮:如果把甲隊(duì)修的4天看作和乙隊(duì)4天修的同樣多,那么總長(zhǎng)度就減少4個(gè)10米,這時(shí)的長(zhǎng)度相當(dāng)于乙(4+5)天修的。由此可求出乙隊(duì)每天修的米數(shù),進(jìn)而再求兩隊(duì)每天共修的米數(shù)。
答題:
解:乙每天修的米數(shù):
(400-10×4)&pide;(4+5)=(400-40)&pide;9=360&pide;9=40(米)
甲乙兩隊(duì)每天共修的米數(shù):
40×2+10=80+10=90(米)
答:兩隊(duì)每天修90米。
9. 學(xué)校買來(lái)6張桌子和5把椅子共付455元,已知每張桌子比每把椅子貴30元,桌子和椅子的單價(jià)各是多少元?
解題思路:
已知每張桌子比每把椅子貴30元,如果桌子的單價(jià)與椅子同樣多,那么總價(jià)就應(yīng)減少30×6元,這時(shí)的總價(jià)相當(dāng)于(6+5)把椅子的價(jià)錢,由此可求每把椅子的單價(jià),再求每張桌子的單價(jià)。
答題:
解:每把椅子的價(jià)錢:
(455-30×6)&pide;(6+5)=(455-180)&pide;11=275&pide;11=25(元)
每張桌子的價(jià)錢:
25+30=55(元)
答:每張桌子55元,每把椅子25元。
10. 一列火車和一列慢車,同時(shí)分別從甲乙兩地相對(duì)開(kāi)出??燔嚸啃r(shí)行75千米,慢車每小時(shí)行65千米,相遇時(shí)快車比慢車多行了40千米,甲乙兩地相距多少千米?
解題思路:
根據(jù)已知的兩車的速度可求速度差,根據(jù)兩車的速度差及快車比慢車多行的路程,可求出兩車行駛的時(shí)間,進(jìn)而求出甲乙兩地的路程。
答題:
解:(7+65)×[40&pide;(75- 65)]=140×[40&pide;10]=140×4=560(千米)
答:甲乙兩地相距560千米。
11. 某玻璃廠托運(yùn)玻璃250箱,合同規(guī)定每箱運(yùn)費(fèi)20元,如果損壞一箱,不但不付運(yùn)費(fèi)還要賠償100元。運(yùn)后結(jié)算時(shí),共付運(yùn)費(fèi)4400元。托運(yùn)中損壞了多少箱玻璃?
解題思路:
根據(jù)已知托運(yùn)玻璃250箱,每箱運(yùn)費(fèi)20元,可求出應(yīng)付運(yùn)費(fèi)總錢數(shù)。根據(jù)每損壞一箱,不但不付運(yùn)費(fèi)還要賠償100元的條件可知,應(yīng)付的錢數(shù)和實(shí)際付的錢數(shù)的差里有幾個(gè)(100+20)元,就是損壞幾箱。
答題:
解:(20×250-4400)&pide;(10+20)=600&pide;120=5(箱)
答:損壞了5箱。
12. 五年級(jí)一中隊(duì)和二中隊(duì)要到距學(xué)校20千米的地方去春游。第一中隊(duì)步行每小時(shí)行4千米,第二中隊(duì)騎自行車,每小時(shí)行12千米。第一中隊(duì)先出發(fā)2小時(shí)后,第二中隊(duì)再出發(fā),第二中隊(duì)出發(fā)后幾小時(shí)才能追上一中隊(duì)?
解題思路:
因第一中隊(duì)早出發(fā)2小時(shí)比第二中隊(duì)先行4×2千米,而每小時(shí)第二中隊(duì)比第一中隊(duì)多行(12-4)千米,由此即可求第二中隊(duì)追上第一中隊(duì)的時(shí)間。
答題:
解:4×2&pide;(12-4)=4×2&pide;8 =1(時(shí))
答:第二中隊(duì)1小時(shí)能追上第一中隊(duì)。
13. 某廠運(yùn)來(lái)一堆煤,如果每天燒1500千克,比計(jì)劃提前一天燒完,如果每天燒1000千克,將比計(jì)劃多燒一天。這堆煤有多少千克?
解題思路:
由已知條件可知道,前后燒煤總數(shù)量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原計(jì)劃燒的天數(shù),進(jìn)而再求出這堆煤的數(shù)量。
答題:
解:原計(jì)劃燒煤天數(shù):
(1500+1000)&pide;(1500-1000)=2500&pide;500=5(天)
這堆煤的重量:
1500×(5-1)=1500×4=6000(千克)
答:這堆煤有6000千克。
14. 媽媽讓小紅去商店買5支鉛筆和8個(gè)練習(xí)本,按價(jià)錢給小紅3.8元錢。結(jié)果小紅卻買了8支鉛筆和5本練習(xí)本,找回0.45元。求一支鉛筆多少元?
解題思路:
小紅打算買的鉛筆和本子總數(shù)與實(shí)際買的鉛筆和本子總數(shù)量是相等的,找回0.45 元,說(shuō)明(8-5)支鉛筆當(dāng)作(8-5)本練習(xí)本計(jì)算,相差0.45元。由此可求練習(xí)本的單價(jià)比鉛筆貴的錢數(shù)。從總錢數(shù)里去掉8個(gè)練習(xí)本比8支鉛筆貴的錢 數(shù),剩余的則是(5+8)支鉛筆的錢數(shù)。進(jìn)而可求出每支鉛筆的價(jià)錢。
答題:
解:每本練習(xí)本比每支鉛筆貴的錢數(shù):
0.45&pide;(8-5)=0.45&pide;3=0.15(元)
8個(gè)練習(xí)本比8支鉛筆貴的錢數(shù):
0.15×8=1.2(元)
每支鉛筆的價(jià)錢:
(3.8-1.2)&pide;(5+8)=2.6&pide;13=0.2(元)
答:每支鉛筆0.2元。
15. 根據(jù)一輛客車比一輛卡車多載10人,可求6輛客車比6輛卡車多載的人數(shù),即多用的(8-6)輛卡車所載的人數(shù),進(jìn)而可求每輛卡車載多少人和每輛大客車載多少人。
解題思路:
根據(jù)一輛客車比一輛卡車多載10人,可求6輛客車比6輛卡車多載的人數(shù),即多用的(8-6)輛卡車所載的人數(shù),進(jìn)而可求每輛卡車載多少人和每輛大客車載多少人。
答題:
解:卡車的數(shù)量:
360&pide;[10×6&pide;(8-6)]=360&pide;[10×6&pide;2]=360&pide;30=12(輛)
客車的數(shù)量:
360&pide;[10×6&pide;(8-6)+10]=360&pide;[30+10]=360&pide;40=9(輛)
答:可用卡車12輛,客車9輛。
16. 某筑路隊(duì)承擔(dān)了修一條公路的任務(wù)。原計(jì)劃每天修720米,實(shí)際每天比原計(jì)劃多修80米,這樣實(shí)際修的差1200米就能提前3天完成。這條公路全長(zhǎng)多少米?
解題思路:
根據(jù)計(jì)劃每天修720米,這樣實(shí)際提前的長(zhǎng)度是(720×3-1200)米。根據(jù)每天多修80米可求已修的天數(shù),進(jìn)而求公路的全長(zhǎng)。
答題:
解:已修的天數(shù):
(720×3-1200)&pide;80=960&pide;80=12(天)
公路全長(zhǎng):
(720+80)×12+1200=800×12+1200=9600+1200=10800(米)
答:這條公路全長(zhǎng)10800米。
17. 某鞋廠生產(chǎn)1800雙鞋,把這些鞋分別裝入12個(gè)紙箱和4個(gè)木箱。如果3個(gè)紙箱加2個(gè)木箱裝的鞋同樣多。每個(gè)紙箱和每個(gè)木箱各裝鞋多少雙?
解題思路:
根據(jù)已知條件,可求12個(gè)紙箱轉(zhuǎn)化成木箱的個(gè)數(shù),先求出每個(gè)木箱裝多少雙,再求每個(gè)紙箱裝多少雙。
答題:
解:12個(gè)紙箱相當(dāng)木箱的個(gè)數(shù):
2×(12&pide;3)=2×4=8(個(gè))
一個(gè)木箱裝鞋的雙數(shù):
1800&pide;(8+4)=18000&pide;12=150(雙)
一個(gè)紙箱裝鞋的雙數(shù):
150×2&pide;3=100(雙)
答:每個(gè)紙箱可裝鞋100雙,每個(gè)木箱可裝鞋150雙
18. 某工地運(yùn)進(jìn)一批沙子和水泥,運(yùn)進(jìn)沙子袋數(shù)是水泥的2倍。每天用去30袋水泥,40袋沙子,幾天以后,水泥全部用完,而沙子還剩120袋,這批沙子和水泥各多少袋?
解題思路:
由已知條件可知道,每天用去30袋水泥,同時(shí)用去30×2袋沙子,才能同時(shí)用完。但現(xiàn)在每天只用去40袋沙子,少用(30×2-40)袋,這樣才累計(jì)出120袋沙子。因此看120袋里有多少個(gè)少用的沙子袋數(shù),便可求出用的天數(shù)。進(jìn)而可求出沙子和水泥的總袋數(shù)。
答題:
解:水泥用完的天數(shù):
120&pide;(30×2-40)=120&pide;20=6(天)
水泥的總袋數(shù):
30×6=180(袋)
沙子的總袋數(shù):
180×2=360(袋)
答:運(yùn)進(jìn)水泥180袋,沙子360袋。
19. 學(xué)校里買來(lái)了5個(gè)保溫瓶和10個(gè)茶杯,共用了90元錢。每個(gè)保溫瓶是每個(gè)茶杯價(jià)錢的4倍,每個(gè)保溫瓶和每個(gè)茶杯各多少元?
解題思路:
根據(jù)每個(gè)保溫瓶的價(jià)錢是每個(gè)茶杯的4倍,可把5個(gè)保溫瓶的價(jià)錢轉(zhuǎn)化為20個(gè)茶杯的價(jià)錢。這樣就可把5個(gè)保溫瓶和10個(gè)茶杯共用的90元錢,看作30個(gè)茶杯共用的錢數(shù)。
答題:
解:每個(gè)茶杯的價(jià)錢:
90&pide;(4×5+10)=3(元)
每個(gè)保溫瓶的價(jià)錢:
3×4=12(元)
答:每個(gè)保溫瓶12元,每個(gè)茶杯3元。
20. 兩個(gè)數(shù)的和是572,其中一個(gè)加數(shù)個(gè)位上是0,去掉0后,就與第二個(gè)加數(shù)相同。這兩個(gè)數(shù)分別是多少?
解題思路:
已知一個(gè)加數(shù)個(gè)位上是0,去掉0,就與第二個(gè)加數(shù)相同,可知第一個(gè)加數(shù)是第二個(gè)加數(shù)的10倍,那么兩個(gè)加數(shù)的和572,就是第二個(gè)加數(shù)的(10+1)倍。
答題:
解:第一個(gè)加數(shù):
572&pide;(10+1)=52
第二個(gè)加數(shù):
52×10=520
答:這兩個(gè)加數(shù)分別是52和520。
21. 一桶油連桶重16千克,用去一半后,連桶重9千克,桶重多少千克?
解題思路:
由已知條件可知,16千克和9千克的差正好是半桶油的重量。9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量。
答題:
解:9-(16-9)=9-7=2(千克)
答:桶重2千克。
22. 一桶油連桶重10千克,倒出一半后,連桶還重5.5千克,原來(lái)有油多少千克?
解題思路:
由已知條件可知,10千克與5.5千克的差正好是半桶油的重量,再乘以2就是原來(lái)油的重量。
答題:
解:(10-5.5)×2=9(千克)
答:原來(lái)有油9千克。
23. 用一只水桶裝水,把水加到原來(lái)的2倍,連桶重10千克,如果把水加到原來(lái)的5倍,連桶重22千克。桶里原有水多少千克?
解題思路:
由已知條件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量。
答題:
解:(22-10)&pide;(5-2)=12&pide;3=4(千克)
答:桶里原有水4千克。
24. 小紅和小華共有故事書36本。如果小紅給小華5本,兩人故事書的本數(shù)就相等,原來(lái)小紅和小華各有多少本?
解題思路:
從“小紅給小華5本,兩人故事書的本數(shù)就相等”這一條件,可知小紅比小華多(5×2)本書,用共有的36本去掉小紅比小華多的本數(shù),剩下的本數(shù)正好是小華本數(shù)的2倍。
答題:
解:小華有書的本數(shù):
(36-5×2)&pide;2=13(本)
小紅有書的本數(shù):
13+5×2=23(本)
答:原來(lái)小紅有23本,小華有13本。
25. 有5桶油重量相等,如果從每只桶里取出15千克,則5只桶里所剩下油的重量正好等于原來(lái)2桶油的重量。原來(lái)每桶油重多少千克?
解題思路:
由已知條件知,5桶油共取出(15×5)千克。由于剩下油的重量正好等于原來(lái)2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。
答題:
解:15×5&pide;(5-2)=25(千克)
答:原來(lái)每桶油重25千克。
26. 把一根木料鋸成3段需要9分鐘,那么用同樣的速度把這根木料鋸成5段,需要多少分?
解題思路:
把一根木料鋸成3段,只鋸出了(3-1)個(gè)鋸口,這樣就可以求出鋸出每個(gè)鋸口所需要的時(shí)間,進(jìn)一步即可以求出鋸成5段所需的時(shí)間。
答題:
解:9&pide;(3-1)×(5-1)=18(分)
答:鋸成5段需要18分鐘。
27. 一個(gè)車間,女工比男工少35人,男、女工各調(diào)出17人后,男工人數(shù)是女工人數(shù)的2倍。原有男工多少人?女工多少人?
解題思路:
女工比男工少35人,男、女工各調(diào)出17人后,女工仍比男工少35人。這時(shí)男工人數(shù)是女工人數(shù)的2倍,也就是說(shuō)少的35人是女工人數(shù)的(2-1)倍。這樣就可求出現(xiàn)在女工多少人,然后再分別求出男、女工原來(lái)各多少人。
答題:
解:35&pide;(2-1)=35(人)
女工原有:
35+17=52(人)
男工原有:
52+35=87(人)
答:原有男工87人,女工52人。
28. 李強(qiáng)騎自行車從甲地到乙地,每小時(shí)行12千米,5小時(shí)到達(dá),從乙地返回甲地時(shí)因逆風(fēng)多用1小時(shí),返回時(shí)平均每小時(shí)行多少千米?
解題思路:
由每小時(shí)行12千米,5小時(shí)到達(dá)可求出兩地的路程,即返回時(shí)所行的路程。由去時(shí)5小時(shí)到達(dá)和返回時(shí)多用1小時(shí),可求出返回時(shí)所用時(shí)間。
答題:
解:12×5&pide;(5+1)=10(千米)
答:返回時(shí)平均每小時(shí)行10千米。
29. 甲、乙二人同時(shí)從相距18千米的兩地相對(duì)而行,甲每小時(shí)行走5千米,乙每小時(shí)走4千米。如果甲帶了一只狗與甲同時(shí)出發(fā),狗以每小時(shí)8千米的速度向乙跑去,遇到乙立即回頭向甲跑去,遇到甲又回頭向飛跑去,這樣二人相遇時(shí),狗跑了多少千米?
解題思路:
由題意知,狗跑的時(shí)間正好是二人的相遇時(shí)間,又知狗的速度,這樣就可求出狗跑了多少千米。
答題:
解:18&pide;(5+4)=2(小時(shí))
8×2=16(千米)
答:狗跑了16千米。
30. 有紅、黃、白三種顏色的球,紅球和黃球一共有21個(gè),黃球和白球一共有20個(gè),紅球和白球一共有19個(gè)。三種球各有多少個(gè)?
解題思路:
由條件知,(21+20+19)表示三種球總個(gè)數(shù)的2倍,由此可求出三種球的總個(gè)數(shù),再根據(jù)題目中的條件就可以求出三種球各多少個(gè)。
答題:
解:總個(gè)數(shù):
(21+20+19)&pide;2=30(個(gè))
白球:30-21=9(個(gè))
紅球:30-20=10(個(gè))
黃球:30-19=11(個(gè))
答:白球有9個(gè),紅球有10個(gè),黃球有11個(gè)。
31. 在一根粗鋼管上接細(xì)鋼管。如果接2根細(xì)鋼管共長(zhǎng)18米,如果接5根細(xì)鋼管共長(zhǎng)33米。一根粗鋼管和一根細(xì)鋼管各長(zhǎng)多少米?
解題思路:
根據(jù)題意,33米比18米長(zhǎng)的米數(shù)正好是3根細(xì)鋼管的長(zhǎng)度,由此可求出一根細(xì)鋼管的長(zhǎng)度,然后求一根粗鋼管的長(zhǎng)度。
答題:
解:(33-18)&pide;(5-2)=5(米)
18-5×2=8(米)
答:一根粗鋼管長(zhǎng)8米,一根細(xì)鋼管長(zhǎng)5米。
32. 水泥廠原計(jì)劃12天完成一項(xiàng)任務(wù),由于每天多生產(chǎn)水泥4.8噸,結(jié)果10天就完成了任務(wù),原計(jì)劃每天生產(chǎn)水泥多少噸?
解題思路:
由題意知,實(shí)際10天比原計(jì)劃10天多生產(chǎn)水泥(4.8×10)噸,而多生產(chǎn)的這些水泥按原計(jì)劃還需用(12-10)天才能完成,也就是說(shuō)原計(jì)劃(12-10)天能生產(chǎn)水泥(4.8×10)噸。
答題:
解:4.8×10&pide;(12-10)=24(噸)
答:原計(jì)劃每天生產(chǎn)水泥24噸。
33. 學(xué)校舉辦歌舞晚會(huì),共有80人參加了表演。其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?
解題思路:
由題意知,實(shí)際10天比原計(jì)劃10天多生產(chǎn)水泥(4.8×10)噸,而多生產(chǎn)的這些水泥按原計(jì)劃還需用(12-10)天才能完成,也就是說(shuō)原計(jì)劃(12-10)天能生產(chǎn)水泥(4.8×10)噸。
答題:
解:4.8×10&pide;(12-10)=24(噸)
答:原計(jì)劃每天生產(chǎn)水泥24噸。
34. 學(xué)校舉辦語(yǔ)文、數(shù)學(xué)雙科競(jìng)賽,三年級(jí)一班有59人,參加語(yǔ)文競(jìng)賽的有36人,參加數(shù)學(xué)競(jìng)賽的有38人,一科也沒(méi)參加的有5人。雙科都參加的有多少人?
解題思路:
參加語(yǔ)文競(jìng)賽的36人中有參加數(shù)學(xué)競(jìng)賽的,同樣參加數(shù)學(xué)競(jìng)賽的38人中也有參加語(yǔ) 文競(jìng)賽的,如果把兩者加起來(lái),那么既參加語(yǔ)文競(jìng)賽又參加數(shù)學(xué)競(jìng)賽的人數(shù)就統(tǒng)計(jì)了兩次,所以將參加語(yǔ)文競(jìng)賽的人數(shù)加上參加數(shù)學(xué)競(jìng)賽的人數(shù)再加上一科也沒(méi)參加 的人數(shù)減去全班人數(shù)就是雙科都參加的人數(shù)。
答題:
解:36+38+5-59=20(人)
答:雙科都參加的有20人。
35. 學(xué)校買了4張桌子和6把椅子,共用640元。2張桌子和5把椅子的價(jià)錢相等,桌子和椅子的單價(jià)各是多少元?
解題思路:
由“2張桌子和5把椅子的價(jià)錢相等”這一條件,可以推出4張桌子就相當(dāng)于10把椅子的價(jià)錢,買4張桌子和6把椅子共用640元,也就相當(dāng)于買16把椅子共用640元。
答題:
解:5×(4&pide;2)+6=16(把)
640&pide;16=40(元)
40×5&pide;2=10O(元)
答:桌子和椅子的單價(jià)分別是100元、40元。
36. 父親今年45歲,5年前父親的年齡是兒子的4倍,今年兒子多少歲?
解題思路:
5年前父親的年齡是(45-5)歲,兒子的年齡是(45-5)&pide;4歲,再加上5就是今年兒子的年齡。
答題:
解:(45-5)&pide;4+5 =10+5 =15(歲)
答:今年兒子15歲。
37. 有兩桶油,甲桶油重是乙桶油重的4倍,如果從甲桶倒入乙桶18千克,兩桶油就一樣重,原來(lái)每桶各有多少千克油?
解題思路:
“如果從甲桶倒入乙桶18千克,兩桶油就一樣重”可推出:甲桶油的重量比乙桶多(18×2)千克,又知“甲桶油重是乙桶油重的4倍”,可知(18×2)千克正好是乙桶油重量的(4-1)倍。
答題:
解:18×2&pide;(4-1)=12(千克)
12×4=48(千克)
答:原來(lái)甲桶有油48千克,乙桶有油12千克。
38. 光明小學(xué)舉辦數(shù)學(xué)知識(shí)競(jìng)賽,一共20題。答對(duì)一題得5分,答錯(cuò)一題扣3分,不答得0分。小麗得了79分,她答對(duì)幾道,答錯(cuò)幾道,有幾題沒(méi)答?
解題思路:
根據(jù)題意,20題全部答對(duì)得100分,答錯(cuò)一題將失去(5+3)分,而不答僅失去5分。小麗共失去(100-79)分。再根據(jù)(100-79)&pide;8=2(題)……5(分),分析答對(duì)、答錯(cuò)和沒(méi)答的題數(shù)。
答題:
解:(5×20-75)&pide;8=2(題)……5(分)
20-2-1=17(題)
答:答對(duì)17題,答錯(cuò)2題,有1題沒(méi)答。
39. 光明小學(xué)舉辦數(shù)學(xué)知識(shí)競(jìng)賽,一共20題。答對(duì)一題得5分,答錯(cuò)一題扣3分,不答得0分。小麗得了79分,她答對(duì)幾道,答錯(cuò)幾道,有幾題沒(méi)答?
解題思路:
“從兩車頭相遇到兩車尾相離”,兩車所行的路程是兩車身長(zhǎng)之和,即(240+264)米,速度之和為(20+16)米。根據(jù)路程、速度和時(shí)間的關(guān)系,就可求得所需時(shí)間。
答題:
解:(240+264)&pide;(20+16)=504&pide;30 =14(秒)
答:從兩車頭相遇到兩車尾相離,需要14秒。
40. 一列火車長(zhǎng)600米,通過(guò)一條長(zhǎng)1150米的隧道,已知火車的速度是每分700米,問(wèn)火車通過(guò)隧道需要幾分?
解題思路:
火車通過(guò)隧道是指從車頭進(jìn)入隧道到車尾離開(kāi)隧道,所行的路程正好是車身與隧道長(zhǎng)度之和。
答題:
解:(600+1150)&pide;700 =1750&pide;700 =2.5(分)
答:火車通過(guò)隧道需2.5分。
41.小明從家里到學(xué)校,如果每分走50米,則正好到上課時(shí)間;如果每分走60米,則離上課時(shí)間還有2分。問(wèn)小明從家里到學(xué)校有多遠(yuǎn)?
解題思路:
在每分走50米的到校時(shí)間內(nèi)按兩種速度走,相差的路程是(60×2)米,又知每秒相差(60-50)米,這就可求出小明按每分50米的到校時(shí)間。
答題:
解:60×2&pide;(60-50)=12(分)
50×12=600(米)
答:小明從家里到學(xué)校是600米。
42.有一周長(zhǎng)600米的環(huán)形跑道,甲、乙二人同時(shí)、同地、同向而行,甲每分鐘跑300米,乙每分鐘跑400米,經(jīng)過(guò)幾分鐘二人第一次相遇?
解題思路:
由已知條件可知,二人第一次相遇時(shí),乙比甲多跑一周,即600米,又知乙每分鐘比甲多跑(400-300)米,即可求第一次相遇時(shí)經(jīng)過(guò)的時(shí)間。
答題:
解:600&pide;(400-300)=600&pide;100 =6(分)
答:經(jīng)過(guò)6分鐘兩人第一次相遇
43.有一個(gè)長(zhǎng)方形紙板,如果只把長(zhǎng)增加2厘米,面積就增加8平方米;如果只把寬增加2厘米,面積就增加12平方厘米。這個(gè)長(zhǎng)方形紙板原來(lái)的面積是多少?
解題思路:
由“只把寬增加2厘米,面積就增加12平方厘米”,可求出原來(lái)的長(zhǎng)是:(12&pide;2)厘米,同理原來(lái)的寬就是(8&pide;2)厘米,求出長(zhǎng)和寬,就能求出原來(lái)的面積。
答題:
解:(12&pide;2)×(8&pide;2)=24(平方厘米)
答:這個(gè)長(zhǎng)方形紙板原來(lái)的面積是24平方厘米。
44.媽媽買蘋果和梨各3千克,付出20元找回7.4元。每千克蘋果2.4元,每千克梨多少元?
解題思路:
用去的錢數(shù)除以3就是1千克蘋果和1千克梨的總錢數(shù)。從這個(gè)總錢數(shù)里去掉1千克蘋果的錢數(shù),就是每千克梨的錢數(shù)。
答題:
解:(20-7.4)&pide;3-2.4 =12.6&pide;3-2.4 =4.2-2.4 =1.8(元)
答:每千克梨1.8元。
45.甲乙兩人同時(shí)從相距135千米的兩地相對(duì)而行,經(jīng)過(guò)3小時(shí)相遇。甲的速度是乙的2倍,甲乙兩人每小時(shí)各行多少千米?
解題思路:
由題意知,甲乙速度和是(135&pide;3)千米,這個(gè)速度和是乙的速度的(2+1)倍。
答題:
解:135&pide;3&pide;(2+1)=15(千米)
15×2=30(千米)
答:甲乙每小時(shí)分別行30千米、15千米。
46.盒子里有同樣數(shù)目的黑球和白球。每次取出8個(gè)黑球和5個(gè)白球,取出幾次以后,黑球沒(méi)有了,白球還剩12個(gè)。一共取了幾次?盒子里共有多少個(gè)球?
解題思路:
兩種球的數(shù)目相等,黑球取完時(shí),白球還剩12個(gè),說(shuō)明黑球多取了12個(gè),而每次多取(8-5)個(gè),可求出一共取了幾次。
答題:
解:12&pide;(8-5)=4(次)
8×4+5×4+12=64(個(gè))
或8×4×2=64(個(gè))
答:一共取了4次,盒子里共有64個(gè)球。
47.上午6時(shí)從汽車站同時(shí)發(fā)出1路和2路公共汽車,1路車每隔12分鐘發(fā)一次,2路車每隔18分鐘發(fā)一次,求下次同時(shí)發(fā)車時(shí)間。
解題思路:
1路和2路下次同時(shí)發(fā)車時(shí),所經(jīng)過(guò)的時(shí)間必須既是12分的倍數(shù),又是18分的倍數(shù)。也就是它們的最小公倍數(shù)。
答題:
解:12和18的最小公倍數(shù)是36
6時(shí)+36分=6時(shí)36分
答:下次同時(shí)發(fā)車時(shí)間是上午6時(shí)36分。
48.父親今年45歲,兒子今年15歲,多少年前父親的年齡是兒子年齡的11倍?
解題思路:
父、子年齡的差是(45-15)歲,當(dāng)父親的年齡是兒子年齡的11倍時(shí),這個(gè)差正好是兒子年齡的(11-1)倍,由此可求出兒子多少歲時(shí),父親是兒子年齡的11倍。又知今年兒子15歲,兩個(gè)歲數(shù)的差就是所求的問(wèn)題。
答題:
解:(45-15)&pide;(11-1)=3(歲)
15-3=12(年)
答:12年前父親的年齡是兒子年齡的11倍。
49.王老師有一盒鉛筆,如平均分給2名同學(xué)余1支,平均分給3名同學(xué)余2支,平均分給4名同學(xué)余3支,平均分給5名同學(xué)余4支。問(wèn)這盒鉛筆最少有多少支?
解題思路:
根據(jù)題意,可以將題中的條件轉(zhuǎn)化為:平均分給2名同學(xué)、3名同學(xué)、4名同學(xué)、5名同學(xué)都少一支,因此,求出2、3、4、5的最小公倍數(shù)再減去1就是要求的問(wèn)題。
答題:
解:2、3、4、5的最小公倍數(shù)是60
60-1=59(支)
答:這盒鉛筆最少有59支。
50. 一塊平行四邊形地,如果只把底增加8米,或只把高增加5米,它的面積都增加40平方米。求這塊平行四邊形地原來(lái)的面積?
解題思路:
根據(jù)只把底增加8米,面積就增加40平方米, 可求出原來(lái)平行四邊形的高。根據(jù)只把高增加5米,面積就增加40平方米,可求出原來(lái)平行四邊形的底。再用原來(lái)的底乘以原來(lái)的高就是要求的面積。
答題:
解:(40&pide;5)×(40&pide;8)=40(平方米)
答:平行四邊形地原來(lái)的面積是40平方米。
正方體有6個(gè)面,12條棱,當(dāng)沿著某棱將正方體剪開(kāi),可以得到正方體的展開(kāi)圖形,很顯然,正方體的展開(kāi)圖形不是唯一的,但也不是無(wú)限的,事實(shí)上,正方體的展開(kāi)圖形有且只有11種,11種展開(kāi)圖形又可以分為4種類型:
1. 141型:中間一行4個(gè)作側(cè)面,上下兩個(gè)各作為上下底面,共有6種基本圖形。
2. 231型:中間一行3個(gè)作側(cè)面,共3種基本圖形。
3. 222型:中間兩個(gè)面,只有1種基本圖形。
4. 33型:中間沒(méi)有面,兩行只能有一個(gè)正方形相連,只有1種基本圖形。